Trypanosoma brucei histone H1 inhibits RNA polymerase I transcription and is important for parasite fitness in vivo
نویسندگان
چکیده
Trypanosoma brucei is a unicellular parasite that causes sleeping sickness in humans. Most of its transcription is constitutive and driven by RNA polymerase II. RNA polymerase I (Pol I) transcribes not only ribosomal RNA genes, but also protein-encoding genes, including variant surface glycoproteins (VSGs) and procyclins. In T. brucei, histone H1 (H1) is required for VSG silencing and chromatin condensation. However, whether H1 has a genome-wide role in transcription is unknown. Here, using RNA sequencing we show that H1 depletion changes the expression of a specific cohort of genes. Interestingly, the predominant effect is partial loss of silencing of Pol I loci, such as VSG and procyclin genes. Labelling of nascent transcripts with 4-thiouridine showed that H1 depletion does not alter the level of labelled Pol II transcripts. In contrast, the levels of 4sU-labelled Pol I transcripts were increased by two- to sixfold, suggesting that H1 preferentially blocks transcription at Pol I loci. Finally, we observed that parasites depleted of H1 grow almost normally in culture but they have a reduced fitness in mice, suggesting that H1 is important for host-pathogen interactions.
منابع مشابه
Gene transcription in trypanosomes.
Trypanosoma brucei and the other members of the trypanosomatid family of parasitic protozoa, contain an unusual RNA polymerase II enzyme, uncoordinated mRNA 5' capping and transcription initiation events, and most likely contain an abridged set of transcription factors. Pre-mRNA start sites remain elusive. In addition, two important life cycle stage-specific mRNAs are transcribed by RNA polymer...
متن کاملCharacterization of a novel class I transcription factor A (CITFA) subunit that is indispensable for transcription by the multifunctional RNA polymerase I of Trypanosoma brucei.
Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface glycoprotein (VSG) and procyclin, which are vital for establishing successful infections in the mammalian host and the tsetse vector, respectively. Thus far, ...
متن کاملRNA polymerase II of Crithidia fasciculata. Within the protozoan order of the Kinetoplastida, this species is the least related to Trypanosoma brucei based on a phylogenetic tree constructed from a comparison of the mitochondrial 9S and 12S rRNA
The C-terminal domain of the largest subunit of RNA polymerase II in higher eukaryotes is present in the protozoan parasite Trypanosoma brucei in a strongly modified form. To determine whether this is a general feature of the Kinetoplastida and to determine the role of this domain in RNA polymerase II transcription, we have analysed the C-terminal domain of the distantly related species Crithid...
متن کاملHistone H3 Variant Regulates RNA Polymerase II Transcription Termination and Dual Strand Transcription of siRNA Loci in Trypanosoma brucei
Base J, β-D-glucosyl-hydroxymethyluracil, is a chromatin modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. In Trypanosoma brucei, J is enriched, along with histone H3 variant (H3.V), at sites involved in RNA Polymerase (RNAP) II termination and telomeric sites involved in regulating variant surface glycoprotein gene (VSG) transcription by RNAP I. Re...
متن کاملActive RNA polymerase I of Trypanosoma brucei harbors a novel subunit essential for transcription.
A unique characteristic of the protistan parasite Trypanosoma brucei is a multifunctional RNA polymerase I which, in addition to synthesizing rRNA as in other eukaryotes, transcribes gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. Thus far, purification of this enzyme has revealed nine orthologues of known subunits but no active enzyme. Here, we h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 93 شماره
صفحات -
تاریخ انتشار 2014